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I.   INTRODUCTION 

The recent excitement about the historic detection of 

Einstein’s hundred year old prediction of gravitational waves at 

the Laser Interferometry Gravitational wave Observatory 

(LIGO) has generated renewed interest in its formal derivation 

from Einstein’s field equations. This brief review explores the 

parallelism between electromagnetic theory and Einstein’s 

theory of gravity from the field equations to the nature of the 

waves they support. The goal is to reveal the equations obeyed 

by the recently detected gravitational waves, and in the limit of 

weak metric perturbations, like the feeble signal detected by 

LIGO, the formal solution to the gravitational wave equations is 

deduced. With the modern reader in mind, the equations are 

written in MKSA to eventually motivate the geometric units.  

We begin by revisiting the classical wave equation 

obeyed for instance by waves in stretched strings, membranes, 

sound waves or even bosonic relativistic particles. The 

inhomogeneous wave equation for the wave function Ψ is written 

as: 
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where, in Cartesian coordinates for instance, the Laplacian 

operator is  
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For mechanical waves, the speed of the wave v is determined 

by the medium through which the wave propagates and the 

characteristic wave number k. The function ),( ts x   describes 

the effects of the sources of the waves in the medium. Physical 

examples of source functions include the force driving a wave 

on a string, or the charge or current density in the 

electromagnetism.  

We first review the formal structure of Maxwell’s theory 

using 3-vector notation as we gradually progress to the 4-

vector or tensor language of relativity. Then we briefly discuss 

Einstein’s field equations and how one may exploit the 

parallelism between the formulations of gravity and 

electromagnetism to deduce gravitational wave equations. 
 

2. Maxwell’s electromagnetism 
The electromagnetic field may be succinctly encoded 

in 2 scalar equations and 2 vector equations. This section 

initially presents Maxwell’s equations in terms of the physical 

fields and then in terms of the potential fields with their gauge 

freedom. The wave equations are deduced and written so it 

conforms to the 4-vector structure they take in relativity.  

    

2.1. Wave equation of the physical fields 

It is straightforward to extract electromagnetic wave 

equations from Maxwell’s field equations. The first noticeable 

complication in the field equations is the interrelation between 

electric E and magnetic B fields in Faraday’s law and Ampere’s 

law.    


 0

1
 E      (Gauss law for electric fields) (3) 

0 B      (Gauss law for Magnetic fields) (4) 
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B
E       (Faraday’s law)  (5) 
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(Ampere’s law)  (6)
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Decoupling is achieved through the curls of Faraday’s law and 

Ampere’s law: 
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Through the following identity and the Gauss laws (3) and (4),  

   VVV  2
 (10) 

one finds the electromagnetic wave equations for the physical 

fields E and cB with derivatives of ρ and J/c appearing as source. 
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The appearance of the 4-dimensional wave operator (compare 

with (1)) reveals that the speed of propagation through vacuum 

of electromagnetic waves is exactly the speed of light c.   

 

2.2. Electromagnetic potentials 

The fact that B is solenoidal (4) implies that it must 

come from the curl of some vector potential A: 

AB     (13) 

Faraday’s law then becomes: 
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This states that AE
t


 is irrotational and may therefore be 

regarded as a gradient of some scalar function –φ. Thus, 
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Using (13), Ampere’s law (6) becomes  
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Using the identity (10) and commuting space and time partial 

derivatives, one finds 
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Furthermore, Gauss law (3), through (15) becomes  
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Maxwell’s field equations are now completely written in terms 

of the potentials φ and A. Notice however that although the wave 

operator appears in (17), it does not appear in (18). This is 

remedied in the next section by exploiting gauge freedom. 

 

2.2. Gauge freedom 

The physical fields (13) and (15) are invariant under 

the following gauge transformation generated by some scalar 

function λ(x, t): 
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Due to this gauge freedom, one can choose φ and A such that: 
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where κ is some constant. In this gauge, equations (17) and (18) 

simplify to wave equations for the electromagnetic potentials 

(φ, cA) with source (ρ, J/c): 
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Note that this has a simpler source term than that of (11). We 

also collected together things with the same units like φ and cA, 

which are both measured in volts in MKSA. We shall see later 

that a gauge freedom similar to (21) is also enjoyed by 

gravitational waves. 

 

2.3. Tensor notation 

 In relativity, time and space are considered together to 

form a 4-vector or a 1st-rank tensor. 
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This represents an event in the spacetime manifold. When the 

Lorentz index μ = 0, 1, 2, 3 appears as a superscript, the tensor 

is said to be ‘contravariant’ in that index. One may represent a 

contravariant 4-vector by a column matrix as shown in (23). 

While if the Lorentz index appears as a subscript, the tensor is 

said to be ‘covariant’ in that index. One may associate a row 

matrix to a covariant 4-vector, but with the time component 

negative that of the associated contravariant 4-vector. 

 3210: xxxxxx  
   (24) 

As illustrated in (24), Lorentz indices are raised or lowered by 

the spacetime metric )(xg  which, in flat spacetime, 

becomes the Minkowskian metric   
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The spacetime metric is symmetric and invertible: 




  gggg        ,   (26) 
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Lorentz invariance 

From just two postulates, Einstein developed his special theory 

of relativity (1905): 

  1.  Laws of Physics are the same in all inertial frames 

of reference. 

2. The speed of light c in vacuum is the same in all 

inertial frames of reference. 

 

For instance, between two inertial observers in relative motion 

along their common x-x’ axis (boosts along the x axis), the 

postulates lead to the Lorentz transformation equations: 
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For a general direction of Lorentz boost, the transformation 

equations may be represented concisely in differential form:
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Equation (28) defines how a contravariant tensor of the first 

rank transforms. Einstein’s summation convention is employed 

where a sum over repeated indices is implied.  

The inverse transformation is  
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The Lorentz invariant square of the spacetime interval in flat 

spacetime is 
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(30) 

As motivated by (22), the 4-vector potential and source may be 

defined as: 
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 The differentiations with respect to time and space may 

be combined together as a 4-dimensional gradient. The Maxwell 

field strength tensor is an anti-symmetric 2nd rank tensor 

defined as 
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where we have shown three alternative notations for the partial 

derivatives. Some components are evaluated for illustration:  
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Thus, the Maxwell field strength tensor has the matrix form 
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2.4 Maxwell’s field equations in tensor form 

Maxwell’s field equations may now be concisely 

written as 
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In terms of the electromagnetic potentials, this becomes 
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μ,ν 4 ,    (36) 

If we commute the partial derivatives in the second term, and 

introduce the gauge (21) 
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then we arrive at the wave equation (22) in tensor form 

 JkA C

ν

μ,ν 4  .   (38) 

The formal solution is written in terms of the retarded Green 

function 

 
 

 




xx

xxx
x

cttJ
xdktA Cμ

/;
; 3 

    (39) 

 

3. Einstein’s general relativity 
3.1 Einstein’s field equations 
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In Einstein’s general theory of relativity, gravity is due to the 

curvature of spacetime. The metric is now a function of the 

spacetime )(xg  and the spacetime invariant is  


 dxdxxgdc )(22    (40) 

From the extremum of the invariant 
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where the Christoffel connection is 
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The geodesic equation serves as the inertial law that governs how 

objects move in spacetime. 

 

The covariant derivative or coordinate-independent 

derivative acting on a first rank tensor X is given by 
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defines the 4th rank Riemann curvature tensor 
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The 2nd rank Ricci tensor is a trace of the Riemann tensor 
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The Ricci scalar is the trace of the Ricci tensor 
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Einstein’s field equations without a cosmological constant is 
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where Tμν acts as the energy-momentum source. A direct 

consequence of the Bianchi identity is the vanishing divergence 

of matter contributions: 

0
;




T     (51) 

 

3.2 Weak metric perturbation 

Under a weak metric perturbation 

)()( xhxg    ,  h  (52) 

the linear part of Ricci Tensor may be shown to take the form 
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Because of gauge freedom, one may choose hµν such that the 

first 3 terms vanish: 
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Thus,  
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If all terms non-first order in h are evicted from the left hand 

side and absorbed in the right hand side, the field equations 

appear as 
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where we have defined the pseudotensor 
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T  represents the contribution from matter while T
~

 

represents contribution from gravity.  

 

Thus, the weak metric field perturbations obey the wave 

equation 
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Finally, in analogy with (39), the solutions may be expressed as 
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xx
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It may be shown that gravitational waves are transverse and that 

they only have two degrees of freedom corresponding to 2 types 

of polarizations.  
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