

Project Einstein: Abstracts and Paper Presentation

Journal homepage: http://www.projecteinstein.cf http://www.dlsu.edu.ph/conferences/project-einstein

Horizontal Vapor Phase Epitaxy Growth of Silicon Nanomaterials for Terahertz Emission

Anjamine Janelle Perigo, ArraMcrina Sebastian and Christopher Queof De La Salle University Manila, Philippines

Abstract

This paper is about the fabrication and characterization of silicon nanomaterials for terahertz emission. Silicon (99.99% purity) bulk powder samples, weighing 0.035g each, were placed inside 0.15-m glass quartz tubes and sealed at 10-6 Torr. Horizontal Vapor Phase Growth Technique (HVPGT) was used to bake the vacuum-sealed tubes for 6, 7 and 8 hours with an 80 0C per minute ramp time. The growth temperatures for each growth time were 800, 1000, and 1200 0C. The tubes were cooled for 5 hours after baking. There were 5 baked samples for each growth temperature, one was used as a reference sample while the other four were cracked open and divided into Zone 1, Zone 2 and Zone 3. The samples were characterized using JEOL JSM-5310 Scanning Electron Microscope and Energy Dispersive X-ray (SEM-EDX) with gold coating, and Spectral microscope. The samples were tested for its capacity to emit THz pulse using the Terahertz-Time Domain Spectroscopy (THz-TDS) setup. The Zone 1 of the tube that has grown Si nanowires (SiNW), with energy band gap = 2.21 eV, baked in 1200 0C for 7 hours was the only sample that has satisfactorily emitted a THz signal with frequency bandwidth = 400 GHz, with an adequate signal-to-noise Ratio (SNR).

Keywords

Nanomaterials, terahertz, Silicon, Horizontal Vapor Phase Epitaxy Growth